

Pathways in Physics

Top Careers in Physics and Astronomy

OCCUPATION	JOB SUMMARY	ENTRY-LEVEL EDUCATION	MEDIAN PAY 2021
Physics research & development	Explore the fundamental laws that govern space, time, energy, and matter.	Ph.D.	\$152,430
Astronomy research & development	Study planets, stars, and other celestial bodies.	Ph.D.	\$128,160
Federal government	Varies widely	MS or BS	\$125,220
High school teacher	Teach science	MS or BS	\$61,820
Healthcare services	Example: Medical physics	BS or MS and certification	\$208,000+

Employment outlook

Occupation	Employment -	Projected Employment -	Change, 2021-31			
	2021	2031	Percent	Numeric		
Astronomers and physicists	25,200	27,200	+8%	2,000		
Astronomers	2,200	2,400	+6%	100		
Physicists	23,000	24,800	+8%	1,900		

Largest employers in Astronomy

OCCUPATION	% OF TOTAL
Research and development in the physical, engineering, and life	41%
sciences	
Colleges, universities, and professional schools; state, local, and private	24
Federal government, excluding postal service	22

Largest employers in Physics

OCCUPATION	% OF TOTAL
Scientific research and development services	44%
Federal government, excluding postal service	15
Colleges, universities, and professional schools; state, local, and private	12
Ambulatory healthcare services	2

Example jobs for physicists

- Atomic, molecular, and optical physicists study atoms, simple molecules, electrons, and light.
- **Computational physicists** study the use of algorithms, numerical analysis, and datasets to explore the interaction between theoretical and experimental physics.
- Condensed matter and materials physicists study the physical properties of matter in molecules, nanostructures, or novel compounds.
- Health physicists study the effects of radiation on people, communities, and the environment.
- *Medical physicists* work in healthcare and use their knowledge of physics to develop new medical technologies.

Example jobs for physicists

- Particle and nuclear physicists study the properties of atomic and subatomic particles, such as quarks, electrons, and nuclei and the forces that cause their interactions.
- Plasma physicists study plasmas, a distinct state of matter that occur naturally in stars and interplanetary space and artificially in products such as neon signs and fluorescent lights.
- Quantum information physicists study ways to use quantum objects, such as atoms and photons, to probe information processing, computing, and cryptography.

Example jobs for astronomers

- Cosmologists and extragalactic/galactic, planetary, and stellar
 astronomers study the creation, evolution, and possible futures of the universe
 and its galaxies, stars, planets, and solar systems.
- Optical and radio astronomers use optical, radio, and gravitational-wave telescopes to study the motions and evolution of stars, galaxies, and the larger scale structure of the universe.

Earning degrees in the field

- BS in physics
 - Typically, 4 years of study
- MS in physics
 - Typically, 2 years of study past the BS
- PhD in physics
 - Typically, 3 years of study past the MS

UTD offer Financial aid and other help

Many times

- one can
be paid to
earn these
degrees

Undergraduates in Physics at UTD

- UT Dallas Physics department
 - Graduates ~30 BS students/year
 - #75th in size out of 680 total programs
 - Big enough to give students options
 - Small enough to give students personal attention
- Many of our UG students
 - Get involved in Society of Physics Students
 - Get involved in research

UTD chapter of Society of Physics Students

Victoria Catlett Co-President Brandon Sike Co-President Benjamin Walker Secretary Alexander Obenza Treasurer Leigh Preimesberger Academic Chair lan Schreiber Media Chair

Dr. Jason Slinker Faculty Advisor

National Service Award

US Student Representative to the SPS Executive Committee

2X Future Faces of Physics Award **Blake Lily Award Winner**

> **SPS Outstanding Chapter Award** <10% receive this 4th Consecutive Outstanding Award 9th Consecutive Chapter Distinction

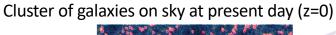
Physics HALO: Giving high school women scientific computing skills to be successful as a physicist.

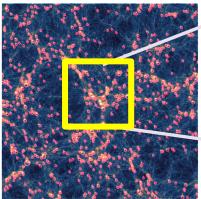
The Blake Lilly Prize:

influence general public about physics.

Astrophysics

How do galaxies and clusters of galaxies grow in the Universe?

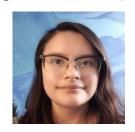



In a few billion years, our Milky Way will collide with Andromeda galaxy, forming a GIGANTIC galaxy!...


Galaxies moving under gravity during past 10 billion years!

Snapshot 27 z=2.73 Groups

Brandon Sike (UTD), using huge computer simulations Illustris-TNG

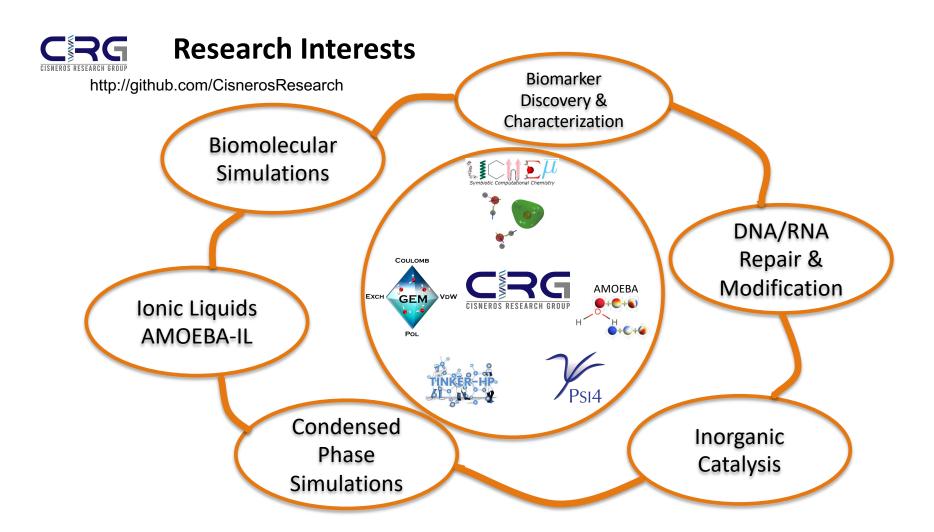


Career Paths? Trayectoria Profesional?

Examples of Dr. Lindsay King's former astrophysics research students Ejemplos de antiguos estudiantes que hicieron investigación en astrofísica con la Dra. Lindsay King

Samantha Enriquez 5G Project Coordinator, Plano (High School Dallas)

Victoria Catlett Telescope computer software engineer Greenbank Observatory, W. Virginia (High School Allen)



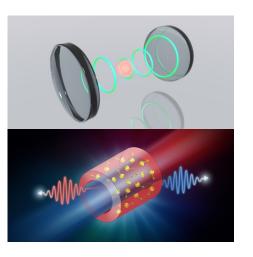
Danny Eilbott PhD Student @UC Berkeley, California (High School Austin)

Biophysics

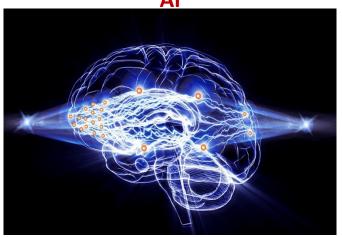
UG current/recent previous research

- -Implementation of algorithms for protein NMR spectra calculations with polarizable potentials (A. Kumar)
- -Prediction of compensatory mutations in proteins (K. Ravishankar, https://doi.org/10.1016/j.bpj.2022.05.036)
- -Biomolecular simulations for protein investigation and cancer mutation characterization
- (B. Boysan https://doi.org/10.1016/j.jmb.2021.167306; M. Fang https://doi.org/10.1016/j.dnarep.2018.07.010)

Quantum optics


Du Group

Quantum Optics Lab


Department of Physics

Quantum Networks

Optical Neural Networks for Al

Optical Microscopy

Quantum Optics Lab

PI: S. Du

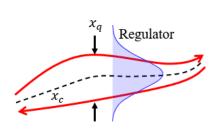
UT DALLAS

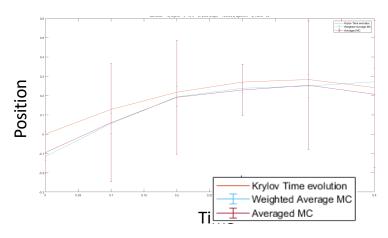
Graduate Students

Undergraduate Students

Quantum (Toward Quantum Computing)

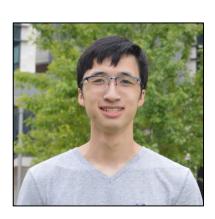
Kolodrubetz group

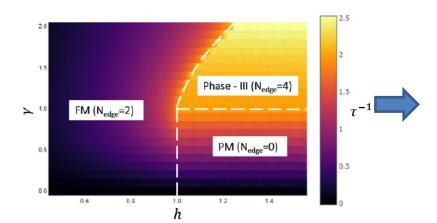

In past 4.5 years, our group had


- 6 UTD undergraduates
- 2 REU students

We're always looking for good students

- Project #1: Simulating non-equilibrium quantum systems using a novel Monte Carlo path integral technique (2019-2020)
 - Patrick Koch, UTD senior. Current PhD student at UIUC
 - Write code to simulate system exactly for simple case
 - Develop codebase to compare to novel Monte Carlo method


Kolodrubetz group


In past 4.5 years, our group had

- 6 UTD undergraduates
- 2 REU students

We're always looking for good students

- Project #2: Uncovering stable edge states in quantum spin system and simulating on quantum computer (2022-present)
 - Khoa Nguyen, UTD senior
 - Developing modified model and simulate classically to obtain phase diagram
 - Plan to implement on cloud quantum computer (IBM)

Cosmology and General relativity

Testing General Relativity and Modified Gravity at Cosmological Scales

Orion Ning, UT Dallas REU 2020, Advisor: Dr. Mustapha Ishak-Boushaki

Goal: Constrain Modified Gravity (MG) Parameters Using Current Cosmological Data

Why test deviations from GR?

 Cosmic Acceleration ("Dark Energy") –
 Cosmological Constant or modification to GR (MG)?

$$G_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}$$

Actioning Females

Background:

 GR and Einstein's Field Equations gives equations governing universe's expansion dynamics – perturbations give growth equations to allow us to probe large-scale structure formation as source of observations

♂ISiTGR Version 3.1 released in February 2020

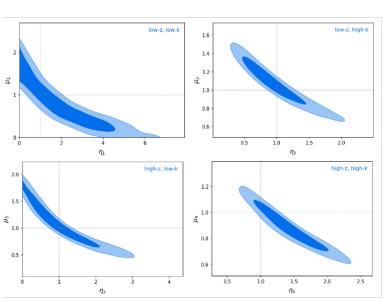
To probe modifications to GR, we use Modified Gravity parameters, which enter through growth equations

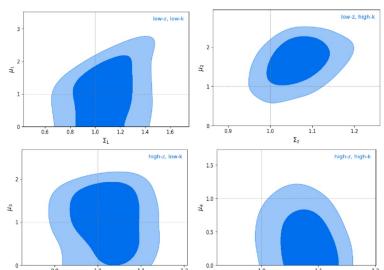
We use (μ, η) (aka (μ, Υ)) and
 (μ, Σ) parameterizations

$$(k^{2} - 3K)\Phi = -4\pi G a^{2} \mu(a, k) \sum_{i} [\rho_{i} \Delta_{i} + 3(\frac{k^{2} - 3K}{k^{2}})\rho_{i}(1 + w_{i})\sigma_{i}]$$

$$k^{2}(\Phi - \gamma(a, k)\Psi) = 12\pi G a^{2} \mu(a, k) \sum_{i} \rho_{i}(1 + w_{i})\sigma_{i}$$

$$k^{2}(\Phi + \Psi) = -4\pi G a^{2} \Sigma(a, k) \sum_{i} [3\rho_{i}(1 + w_{i})\sigma_{i} + \frac{2\rho_{i} \Delta_{i}}{1 - 3K/k^{2}}]$$


Method: Using ISiTGR (https://doi.org/10.1103/PhysRevD.100.103530 (Phys. Rev. D 100, 103530 (2019)))


- Allows constraints on MG parameters, and other features
- Involves CAMB/CosmoMC, which calculates cosmological parameters and samples them (via MCMC)

Planck 2018 Results and Analysis on Parameter Constraints

• Both functional form and binning forms implemented, binning results shown. Note, MG parameter = 1 implies GR

Conclusions: Overall, GR a valid theory that is mostly consistent with current cosmological probes. However, there are minor tensions with GR in binning results seen via constraints on MG parameters.

Main feature is Planck 2018 Cosmic Microwave Background (CMB) likelihoods; Complementary data sets include:

> Dark Energy Survey (DES) Year 1 Clustering/Lensing Data Planck 2018 CMB Lensing Data Pantheon18 (Type Ia Supernovae) Baryon Acoustic Oscillations (BAO) Redshift Space Distortions (RSD)

Constraints for MG parameters using traditional binning in the (μ, η) parameterization							
μ_1	μ_2	μ_3	μ_4	η_1	η_2	η_3	η_4
$0.83^{+0.29}_{-0.74}$	$1.08^{+0.19}_{-0.17}$	$1.08^{+0.32}_{-0.41}$	$0.88^{+0.12}_{-0.14}$	< 2.76	$0.96^{+0.22}_{-0.42}$	< 1.35	$1.43^{+0.32}_{-0.41}$
Constraints for MG parameters using traditional binning in the (μ, Σ) parameterization							
μ_1	μ_2	μ_3	μ_4	Σ_1	Σ_2	Σ_3	Σ_4
$1.13^{+0.48}_{-0.95}$	$1.63^{+0.46}_{-0.35}$	$1.08^{+0.70}_{-0.51}$	< 0.553	$1.10^{+0.19}_{-0.19}$	$1.065^{+0.046}_{-0.052}$	$1.021^{+0.068}_{-0.055}$	$1.076^{+0.040}_{-0.031}$

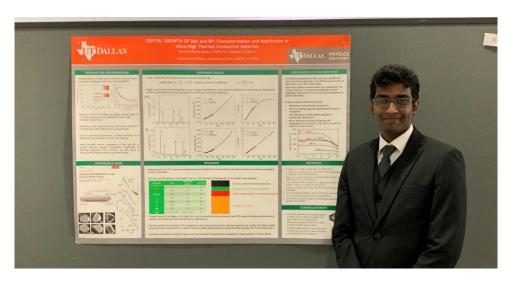
Acknowledgements and thanks to: Dr. Mustapha Ishak-Boushaki, Cristhian Garcia-Quintero, Ganymede Cluster computations, UT Dallas Physics NSF REU Program and Funding

See more of this work on:

https://doi.org/10.1088/ 1475-7516/2020/12/018

(JCAP 2012:018, 2020)

Materials



Undergraduate Students in Lv's Lab

- All seven undergraduate students received UTD Undergraduate Student Research Award.
- Two students (Varun Anand and Davis Zackaria) received **Undergraduate Student Poster Contest Award**.
- Two students (Chris Cailide and David Scherm) went to **Air Force Research Lab** (**AFRL**) for summer interns.

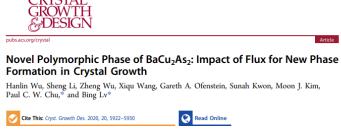
Varun Anand Davis Zackria

Undergraduate Students in Lv's lab

- Six undergraduate students have at least one publication with the group before graduation.
- One student was directly hired by Texas Instrument upon graduation. **All the rest all went to graduate schools** (received multiple offers from UC Davis, Ohio State, U. Colorado, Boston College, UIUC, UC San Diego, Arizona State, U Oklahoma etc).

Sheng Li, Keith M. Taddei, Xiqu Wang, Hanlin Wu, Jörg Neuefeind, Davis Zackaria, Xiaoyuan Liu,

Submitted: 24 April 2019 · Accepted: 8 June 2019


Published Online: 1 July 2019

Clarina Dela Cruz.2 and Bing Ly1.a) (6)

Inorganic Chemistry

Crystal Structure and Electronic Properties of New Compound Zr_{6.5}Pt₆Se₁₉

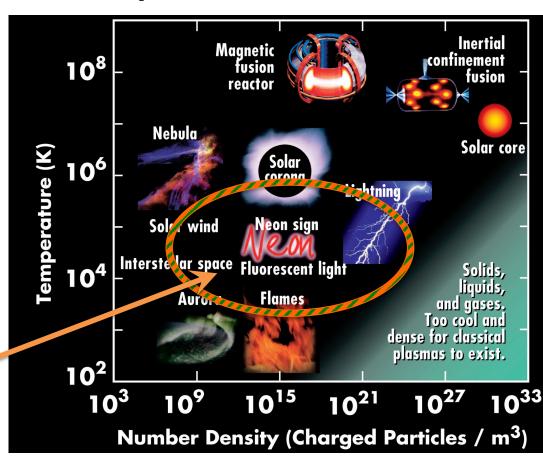
Hanlin Wu, Huifei Zhai, Sheng Li, Maurice Sorolla, II, Gregory T. McCandless, Daniel Peirano Petit, Julia Y. Chan, and Bing Lv^*

Canted Antiferromagnetism in the Quasi-1D Iron Chalcogenide BaFe₂Se₄

Xiaoyuan Liu, ¹ Keith M. Taddei, ² Sheng Li, ¹ Wenhao Liu, ¹ Nikhil Dhale, ¹ Rashad Kadado, ¹ Diana Berman, ³ Clarina Dela Cruz, ² and Bing Lv^{1,4,*}

¹Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, USA ²Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

Plasma Physics


Plasma Physics

99% of the visible universe is plasma

- Stars
- Interstellar space
- Lightning
- Fire

Plasmas are WIDELY used in industry

- Arc welding/cutting
- Making computer 'chips'
- Coating windows

Undergraduate Students in Goeckner's lab

- 62 UG students have worked in his lab since 1999
 - 37 from UTD; 25 from other schools
 - 8 UG honors theses
 - 13 scientific publications in which UG students are authors.
- Some recent students have gone on to Princeton, Auburn and Georgia
 Tech
- 5 stayed at UT Dallas receiving PhDs with Dr Goeckner.

Example Pathways

Ashish Jindal

WT White High School (DISD)

⇒ UT Dallas/Brookhaven Comm College

Current Employment: Sandia National Labs

Title: Principal Member of Technical Staff

Caleb Nelson

Prosper High School

⇒ UT Dallas

Current Employment: 3M

Title: Senior Research Specialist

Example Pathways

Gabriel Parron-Wells

XXXX (DISD)

⇒ UT Dallas

Current Employment:

Title:

Keith Hernandez

Dallas Area High School

- \Rightarrow UPS / Odd Jobs
- ⇒ Collin Comm College (at 27)
- ⇒ UT Dallas

Current Employment: Applied Materials

Title: Physicist/Scientist

Questions?